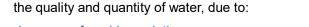


Milica Marković, Mladen Milanović and Slaviša Trajković

Water quality evaluation in Bovan reservoir for irrigation purpose

University of Niš **Faculty of Civil Engineering and Architecture**


International Symposium "Water Resources Management: New Perspectives and Innovative Practices, Novi Sad, 23-24 September 2021

Introduction

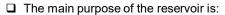
Water is the most important natural resource!

☐ Problem of water resources in the future is related to

- > increase of world population,
- > accelerated development of industry,
- > climate change.
- ☐ Lack of food especially emphasizes the *importance* of irrigation systems developing.

Aleksinac field

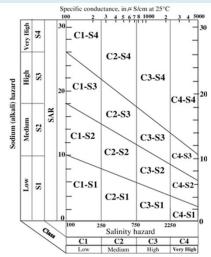
- ☐ Aleksinac field arable land of 5660 ha, in the valley of the Južna Morava River,
- ☐ The irrigation area is within twelve cadastral municipalities in the municipality of Aleksinac,
- ☐ The average plot area is 60,91a,
- ☐ The feasibility study (1994) envisages irrigation from the multi-purpose reservoir Bovan.


The multipurpose reservoir Bovan

Watercourse	Moravica
Nearest settlement	Aleksinac
Total reservoir volume	60 000 000 m ³
Minimal water level	243.00 MASL
Normal water level	252.00 MASL
Maximal water level	261.50 MASL

The multipurpose reservoir Bovan

- water supply,
- > flood protection,
- protection against sedimentation within the HPS "Iron Gate", +
- ➤ increasing of low water level in the river, additionally
- > hydro power and
- > irrigation.
- □ Designed reservoir volume envisaged for irrigation purpose is 15*10⁶ m³.


USSL Classification

The US Salinity Laboratory (USSL) classification represents <u>the method for evaluation of irrigation water quality</u>, based on the hazards of:

- > salinization and
- alkalization.

of irrigated soils.

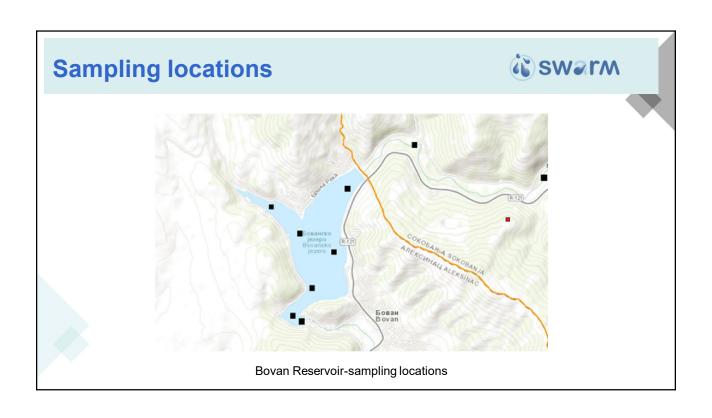
USSL classification of irrigation water (Wilcox, 1955)

SAR (Sodium adsorption ratio)

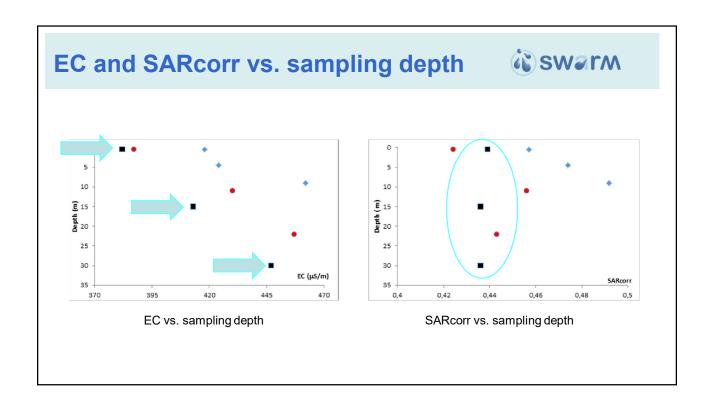
Alkalization of irrigated water can be defined using the SAR (Sodium adsorption ratio) value:

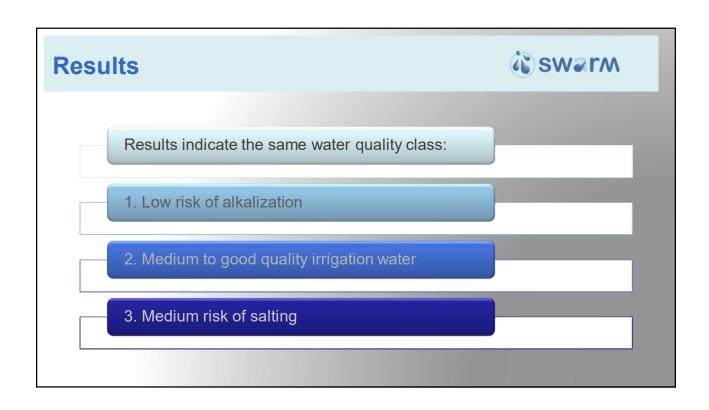
$$SAR = \frac{Na}{\sqrt{\frac{C_a + M_g}{2}}}$$

The lack of springs with quality water for irrigation leads to the modification of the basic SAR formula into SAR_{corr} :


$$SAR_{corr} = SAR[1 + (8.4 - pHc)]$$

$$pHc = (pk_2 - pk_c) + p(c_a + M_g) + p(Alk)$$


p - the negative logarithm,


k₂- the second dissociation equilibrium constant of carbonic,

 $k_{\text{c}}\text{-}$ the solubility equilibrium constant for calcite.

	classification of reservoir water						344911741		
	A1	A2	A3	B1	B2	В3	V1	V2	V3
Depth (m)	0.5	15	30	0.5	11	22	0.5	4.5	9
EC	382	413	447	387	430	457	418	424	462
S.O. (mg/l)	254	264	291	249	279	288	267	273	301
Na (mg/l)	7.2	7.1	7.2	6.9	7.3	7.4	7.4	7.7	7.9
K (mg/l)	1.8	1.9	3	1.1	2	2.2	1.9	2	1.9
Ca (mg/l)	62	64	71	63	75	75	72	72	83
Mg (mg/l)	17	17	20	15	9	20	11	11	7
CO ₃ (mg/l)	7.2	0	0	7.2	0	0	7.2	6	5.4
HCO ₃ (mg/l)	196	232	255	200	242	256	218	225	250
SAR corr	0.439	0.436	0.436	0.424	0.456	0.443	0.457	0.474	0.492
Class	C2S1	C2S1	C2S1	C2S1	C2S1	C2S1	C2S1	C2S1	C2S1

